

Detecting MILD Cognitive Impairment BY EXPLOITING LINGUISTIC INFORMATION FROM TRANSCRIPTS

Veronika Vincze^{1,2}, Gábor Gosztolya^{1,2}, László Tóth¹, Ildikó Hoffmann^{2,3}, Gréta Szatlóczki², Zoltán Bánréti³, Magdolna Pákáski², János Kálmán²

> MTA-SZTE Research Group for Artificial Intelligence ² University of Szeged ³ Research Institute of Linguistics, Hungarian Academy of Sciences vinczev@inf.u-szeged.hu

> > first

MCI on the

basis of written

texts for Hungar

the

rian

collaboration

linguists, medical experts and com-

puter scientists

jS

Motivation and goals

- Alzheimer's disease (AD) may take years to develop
- in its early stage it usually appears as a mild cognitive impairment (MCI)
- it is very difficult to diagnose
- yet an early diagnosis would be important (to start the treatment as early as possible)
- Goal: to develop an automatic screening tool for MCI
- NOT a perfect diagnosis but a quick and cheap pre-filtering of the population

Feature set

Spontaneous speech based features: filled and silent pauses; hesitations; pauses that follow an article and precede content words; lengthened sounds (as a special form of hesitation)

Morphological features: number of tokens and words; number and rate of distinct lemmas; number of punctuation marks; number and rate of nouns, verbs, adjectives, pronouns and conjunctions; number of first person singular verbs; number and rate of unanalyzed words

Semantic features: fillers and uncertain words compared to the number of all tokens; words/phrases related to memory activity (e.g. nem emlékszem not remember-1SG "I can't remember"); negation words; content words and function words; number of thematic words related to the content of the films **Demographic features:** gender; age; education.

Mild cognitive impairment

- prodromal stage of Alzheimer's Disease
- the (spontaneous) speech of the patient is influenced
- verbal fluency declines: longer hesitations and a lower speech rate
- the lexical frequency of words and part-of-speech tags may also change
- the emotional responsiveness of the patient also changes
- however, language capacities have received marginal attention when diagnosing AD [1]

Automatic detection of dementia

- automatic speech recognition tools for detecting
- -aphasia [2]
- -mild cognitive impairment [3]
- -Alzheimer's Disease [4]
- lexical analysis of spontaneous speech [5]
- changes in the writing style may also refer to dementia [6] • speech recognition techniques for detecting MCI in Hungarian [7]

Results

	MCI		Control			Total				
Features	Р	R	F	Р	R	F	Р	R	F	%
all included	72.0	75.0	73.5	64.7	61.1	62.9	68.9	69.0	68.9	69.1
w/o semantic	75.0	81.3	78.0	71.9	63.9	67.6	73.7	73.8	73.6	73.8
	+3.0	+6.3	+4.5	+7.2	+2.8	+4.7	+4.8	+4.8	+4.7	+4.7
w/o demographic	70.0	72.9	71.4	61.8	58.3	60.0	66.5	66.7	66.5	66.7
	-2.0	-2.1	-2.1	-2.9	-2.8	-2.9	-2.4	-2.3	-2.4	-2.4
w/o speech-based	70.8	70.8	70.8	61.1	61.1	61.1	66.7	66.7	66.7	66.7
	-1.2	-4.2	-2.7	-3.6	0.0	-1.8	-2.2	-2.3	-2.2	-2.4
w/o morphological	72.3	70.8	71.6	62.2	63.9	63.0	68.0	67.9	67.9	67.9
	+0.3	-4.2	-1.9	-2.5	+2.8	+0.1	-0.9	-1.1	-1.0	-1.2
only significant	81.4	72.9	76.9	68.3	77.8	72.7	75.8	75.0	75.1	75.0
	+9.4	-2.1	+3.4	+3.6	+16.7	+9.8	+6.9	+6.0	+6.2	+5.9

Data collection

- 84 native speakers of Hungarian (a morphologically rich language), whose medical diagnosis for MCI were at our disposal
- two short animated films were presented to the patients at the memory ambulance of the University of Szeged
- patients were asked to talk about the first film then about their previous day, and lastly, about the second film
- speech productions were recorded and transcribed by linguists

	MCI	Control	Total
Male	16	13	29
Female	32	23	55
Total	48	36	84

Linguistic features of transcripts

- several forms of hesitations and silent pauses
- phonological deletion (*mer* instead of the standard form *mert* ,,because")
- lengthening (*utánna* instead of the standard form *utána*, ,then")
- duplications (*ez ezt* ,,this this-ACC'')

Discussion

- statistically significant differences among MCI patients and healthy controls concerning several linguistic and speech-based features
- speech-based, demographic and morphological features unequivocally contributed to performance
- the effect of semantic features seems less obvious as they harm performance taken as a whole but some individual semantic features are useful for the system
- MCI patients that spoke only a few short sentences were often classified as healthy controls due to a lower number and rate of hesitations, pauses, fillers and uncertain words
- healthy subjects who talked more also hesitated more, hence they were misclassified as MCI patients

Conclusions

- automatic detection of Hungarian patients suffering from mild cognitive impairment on the basis of their speech transcripts
- both statistical and machine learning results revealed that morphological and spontaneous speech-based features have an essential role in distinguishing MCI patients from healthy controls
- Future work:
- -dataset to be expanded
- -machine learning system to be improved by combining features from automatic speech recognition and from the analysis of written texts

- neologisms (*feltkáva*, probably *főtt kávé* "boiled coffee")
- fillers, indefinite pronouns and uncertain words (*ilyen* "such", *izé* "thing, gadget", *és* aztán "and then", valamilyen "some kind of", valahogy "somehow")
- paraphrases (egy ilyen bagolyszerűség a such owl-likeness "something similar to an owl")

Experiments

- transcripts were morphologically and syntactically parsed by magyarlanc [8]
- morphological, syntactic and semantic features were extracted from the output of magyarlanc
- statistically significant differences were found for most of the features
- support vector machines with leave-one-out cross validation
- baseline: majority labeling (57.14% in terms of accuracy)

References

- [1] Bayles, K.A.: Language function in senile dementia. Brain and Language **16**(2) (1982) 265–280
- [2] Fraser, K.C., Meltzer, J.A., Graham, N.L., Leonard, C., Hirst, G., Black, S.E., Rochon, E.: Automated classification of primary progressive aphasia subtypes from narrative speech transcripts. Cortex 55 (2014) 43–60
- [3] Lehr, M., Prud'hommeaux, E.T., Shafran, I., Roark, B.: Fully automated neuropsychological assessment for detecting mild cognitive impairment. In: INTERSPEECH, ISCA (2012) 1039–1042
- [4] Satt, A., Hoory, R., König, A., Aalten, P., Robert, P.H.: Speech-based automatic and robust detection of very early dementia. In: 15th Annual Conference of the International Speech Communication Association. (2014) 2538–2542
- [5] Thomas, C., Kešelj, V., Cercone, N., Rockwood, K., Asp, E.: Automatic detection and rating of dementia of Alzheimer type through lexical analysis of spontaneous speech. In: Mechatronics and Automation, 2005 IEEE International Conference. Volume 3., IEEE (2005) 1569–1574
- [6] Le, X., Lancashire, I., Hirst, G., Jokel, R.: Longitudinal detection of dementia through lexical and syntactic changes in writing: a case study of three British novelists. Literary and Linguistic Computing 26(4) (2011) 435–461
- [7] Tóth, L., Gosztolya, G., Vincze, V., Hoffmann, I., Szatlóczki, G., Biró, E., Zsura, F., Pákáski, M., Kálmán, J.: Automatic detection of mild cognitive impairment from spontaneous speech using ASR. In: 16th Annual Conference of the International Speech Communication Association. (2015) 2694–2698
- [8] Zsibrita, J., Vincze, V., Farkas, R.: magyarlanc: A toolkit for morphological and dependency parsing of Hungarian. In: Proceedings of RANLP. (2013) 763-771

LIFA TikZposter